Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37233366

RESUMO

Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer's disease. The goal of this study was to develop hydrogel-based biomimetic ECM models with varying stiffness and evaluate the effects of ECM composition and stiffness on astrocyte cell response. Xeno-free ECM models were synthesized by combining varying ratios of human collagen and thiolated hyaluronic acid (HA) crosslinked with polyethylene glycol diacrylate. Results showed that modulating ECM composition yielded hydrogels with varying stiffnesses that match the stiffness of the native brain ECM. Collagen-rich hydrogels swell more and exhibit greater stability. Higher metabolic activity and greater cell spreading was observed in hydrogels with lower HA. Soft hydrogels trigger astrocyte activation indicated by greater cell spreading, high GFAP expression and low ALDH1L1 expression. This work presents a baseline ECM model to investigate the synergistic effects of ECM composition and stiffness on astrocytes, which could be further developed to identify key ECM biomarkers and formulate new therapies to alleviate the impact of ECM changes on the onset and progression of neurodegenerative diseases.

2.
Biomater Adv ; 148: 213386, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948108

RESUMO

There are questions about how well small-animal models for tissue-engineered vascular grafts (TEVGs) translate to clinical patients. Most TEVG studies used grafting times ≤6 months where conduits from generally biocompatible materials like poly(ε-caprolactone) (PCL) perform well. However, longer grafting times can result in significant intimal hyperplasia and calcification. This study tests the hypothesis that differences in pro-inflammatory response from pure PCL conduits will be consequential after long-term grafting. It also tests the long-term benefits of a peritoneal pre-implantation strategy on rodent outcomes. Electrospun conduits with and without peritoneal pre-implantation, and with 0 % and 10 % (w/w) collagen/PCL, were grafted into abdominal aortae of rats for 10 months. This study found that viability of control grafts without pre-implantation was reduced unlike prior studies with shorter grafting times, confirming the relevance of this model. Importantly, pre-implanted grafts had a 100 % patency rate. Further, pre-implantation reduced intimal hyperplasia within the graft. Differences in response between pure PCL and collagen/PCL conduits were observed (e.g., fewer CD80+ and CD3+ cells for collagen/PCL), but only pre-implantation had an effect on the overall graft viability. This study demonstrates how long-term grafting in rodent models can better evaluate viability of different TEVGs, and the benefits of the peritoneal pre-implantation step.


Assuntos
Enxerto Vascular , Ratos , Animais , Hiperplasia , Prótese Vascular , Peritônio/cirurgia , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...